
CSE101: Design and Analysis of Algorithms

Ragesh Jaiswal, CSE, UCSD

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Claim 2: Let S be a subset of vertices containing s such that we
know the shortest path length l(s, u) from s to any vertex in
u ∈ S . Let e = (u, v) be an edge such that

1 u ∈ S , v ∈ V \ S ,
2 (l(s, u) +We) is the least among all such cut edges.

Then l(s, v) = l(s, u) +We .

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

What is the running time of the above algorithm?

Same as that of the Prim’s algorithm. O(|E | · log |V |).

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E) = 9

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: d(s) = 0; d(A) = 1; d(E) = 9; d(D) = 15; d(C) = 17; d(B) = 21

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Greedy Algorithms
Shortest path

Algorithm

Dijkstra’s Algorithm(G , s)
- S ← {s}
- d(s)← 0
- While S does not contain all vertices in G

- Let e = (u, v) be a cut edge across (S ,V \ S) with minimum
value of d(u) +We

- d(v)← d(u) +We

- S ← S ∪ {v}

Figure: The algorithm also implicitly produces a shortest path tree that gives the
shortest paths from s to all vertices.

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Course Overview

Basic graph algorithms

Algorithm Design Techniques:

Greedy Algorithms
Divide and Conquer
Dynamic Programming
Network Flows

Computational Intractability

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Introduction

You have already seen multiple examples of Divide and
Conquer algorithms:

Binary Search
Merge Sort
Quick Sort
Multiplying two n-bit numbers in O

(
nlog2 3

)
time.

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Main Idea

Main Idea: Divide the input into smaller parts. Solve the
smaller parts and combine their solution.

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Problem

Given an array of unsorted integers, output a sorted array.

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

How do we argue correctness?

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

How do we argue correctness?
Proof of correctness of Divide and Conquer algorithms are usually
by induction.

Base case: This corresponds to the base cases of the algorithm.
For the MergeSort, the base case is that the algorithm correctly
sorts arrays of size 1.
Inductive step: In general, this corresponds to correctly combining
the solutions of smaller subproblems. For MergeSort, this is just
proving that the Merge routine works correctly. This may again be
done using induction and is left as an exercise.

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Algorithm

MergeSort(A)
- If (|A| = 1) return(A)
- Divide A into two equal parts AL and AR

- BL ← MergeSort(AL)

- BR ← MergeSort(AR)

- B ← Merge(BL,BR)

- return(B)

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.
T (n) ≤ 2 · T (n/2) + cn for n ≥ 2 and T (1) ≤ c is called a
recurrence relation for the running time T (n).
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Let n be a power of 2 (e.g., n = 256)
Let T (n) denote the worst case running time for the algorithm.
Claim 1: T (1) ≤ c for some constant c .
Claim 2: T (n) ≤ 2 · T (n/2) + cn for all n ≥ 2.
T (n) ≤ 2 · T (n/2) + cn for n ≥ 2 and T (1) ≤ c is called a
recurrence relation for the running time T (n).
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Unrolling the recursion: Rewrite T (n/2) in terms of T (n/4) and
so on until a pattern for the running time with respect to all levels
of the recursion is observed. Then, combine these and get the
value of T (n).

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Recurrence relation for Merge Sort: T (n) ≤ 2 · T (n/2) + cn for
n ≥ 2 and T (1) ≤ c.
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?

Unrolling the recursion: Rewrite T (n/2) in terms of T (n/4) and
so on until a pattern for the running time with respect to all levels
of the recursion is observed. Then, combine these and get the
value of T (n).

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Merge Sort

Recurrence relation for Merge Sort: T (n) ≤ 2 · T (n/2) + cn for
n ≥ 2 and T (1) ≤ c.
How do we solve such recurrence relation to obtain the value of
T (n) as a function of n?
So, the running time T (n) ≤ cn · log n = O(n log n).

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Solving recurrence relations

Question: Suppose there is a divide and conquer algorithm
where the recurrence relation for running time T (n) is the
following:

T (n) ≤ 2T (n/2) + cn2 for n ≥ 2, and T (1) ≤ c .

What is the solution of this recurrence relation in big-oh
notation?

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

Divide and Conquer
Master theorem

Theorem

Master Theorem: Let

T (n) ≤ a · T
(n
b

)
+ c · nk and T (1) ≤ c ,

Then

T (n) =


? if a < bk

? if a = bk

? if a > bk

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

End

Ragesh Jaiswal, CSE, UCSD CSE101: Design and Analysis of Algorithms

